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AN ANSLYTICAL METHOD FOR THE DESIZX OF SCORED RUPTURE DIAPHRAGMS

FOR USE IX SHOCK AND GUX TUNNELS
R.W. Hendersoz
ABSTRACT
A method of determining burst pressure anc petal curvatur

for a particular diaphragm opening, thickness and score depth

is presenteo which utilizes the plastic stress-strain relation-

kst e Sesd Sy S -~k "

ship for the diaphragm materisl as determined by a coaventional

results is included.

TRTRODUCTION

AR 2 S b 3 S AR Ao R NS R

Scored, metal diuphragms are used extensively in shock tubes ancd
gas guns as quick-opening devices. Design of these rupture diaphragms has

. coe 1 X . 1
generally relied on empirical or semi-empirical methods.”™ The practice of

Lot e Mol e

scoring so that tte diaphragm will open in discrete sections or petals is

tensile test. A comparison of experimental and predicted
fairly universal. Two score marks ¢r grooves are usually cut at right

¢
Pt

angles in nne face. Where the depth of the groove is an appreciable portion

e e 8 e AR NN LG R Mkt s iy A

of the diaphragm thickness, its influence on the burst pressure is evident

oS

P sa

N

and must be takerr into account. Ia operation the diaphragm bulges outward

[N

into the open area opposite the side being pressurized, the bulge

4

resembling a portion of a sphere. At burst the diaphragm breaks along .

EESART Y
"M-"

Nty

the score marks into four petals which fold back out of the main flow

stream against the sides of the opening.
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Althcugh scoring helps it does not necessarily eliminate

vy
(1%

undesirable behavior at rupture, such as Iacomplete opening and breaking

T:mnel,2 many of the original diaphragme had one or more of their

X
-
=

petals knocked off (or bent back across the opening) by the shock waves

l cff of parts of the diaphragm. In the case of APL's Hypersornic Jun
!E which are reflected withir the gun compression unit. The piecaes of

flying metal so produced constituted a hazard to the gun's smooth precision

bore. The design cf these diaphragms was similar to ones successfully

LI NI

 S—ry

used with shock tunnels at the Naval Ordnance Laboratory, White Oak,

Maryland, The material used in each instance was 304 stainless steel.

Design thicknesses for the series of burst pressures desired for cperation

ot v i

at APL were determined from hydraulic burst test of a number of samples of
varying thickness, The diaphragms for the higher burst pressures (and in
many instances the intermediate burst pressures) in this original series
had one or more of their petals knocked off or bent back across the opening

when used in the gun. The petals of these diaphragms appeared to have a smaller

radius of curvature, that is, to have bulged further into the confine of the

2

s S iy

opening before rupturing, than those diaphragms which retained their petals
(or did not have them bent back across the opening). This led to the

speculation that the radius of curvature of the bulge was a factor in petal

— | |

behavior. With a short radius of curvature the tips of the petals after

rupture would project further into the flow stream, whereas with a large

radius of curvature they would lie relatively flat against the walls of

the opening.
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The bending of the petals laterally by the action of the
gas following rupture makes for considerable uncertainty in measuring
the amount of curvature at the insta.t of burst. However, examination of
specimens of the design ruptured by hydraulic pressure seemed to cenfirm
a difference in curvature between diaphragms having different design burst
pressures, Since the only design variables for a particular burst pressure,
material and size of opening are the diaphragm thickness and groove
depth, the question is how, if at alil, do they affect curvature, The
further observation that those d7aphragms which lost petals (hence those
with apparently smaller radius of curvature) had larger groove to panel
thickness ratios indicated the possibility of a relationship of this

parameter to curvature,

Th: following analysis shows that a relationship between thickness
ratio and curvature does exist and that burst pressure and petal curvature
are func:ions of the two thicknesses - burst pressure being primarily a
function of thickness at the groove bottom, and curvature being a function
of diaphragm thickness. The method used is considered to be generally
applicable to the design of flat, scored, rupture-diaphragms and may be
employed to control petal curvature as well as to determine burst pressure

on the basis of diaphragm thickness and score depth.

g’
g
|

RSP

N

SEBE A LRIV RN

-,

s A gV, %
B a2 il Y Bt S gy S VAR LN L e w8 R T LY ot

e,

s AR

ol

 trnn, e LR e s A i Y




-

< oo e 2 oo R T A o o " " T ST T . o o - i i _ -
! ST 1 o 3 N Sy s o e ks . s o by AT " P " —— R
; Al 3 t%s i v St TS, A ST L WAL
. - o e . . e \ T NG b MY
y e > " oamaspted : A2
R S R NIt S g Tl g e 27 § gy A AL Lo 17 g DTt o LR e S L R o s kT T ]t g o e g o RSSO o N RO L g
’
Fowwey - S S r‘_-’ 4 ,
3 t 3
-
2

The Johns Hophing Universty
APPLIED PHVYSICS LABGRATOAY

Sitver Speing. Waryland ANALYSIS

For the purpose of this analysis s diaphragm of the design
shown in Fig. la is used. Fressure is applied on the gccoved side
with the opposite side facing a circular opening having a rounded edge,
Fig. 1b, Under the action of pressure, part of the diaphragm bulges
outward into the opening, Fig. 2. Treating this part of the diaphragm
as a portion of a thin-walled sphere with an -nside radius, s the
stress in the wall may be determined by considering an element of the
wall with four of its faces under tension of a force, F, Fig. 2. A

force, F due to the pressure, P, acts on the inside face of the element

p?
over an area (M,)2 and

Fp = P07 =2 rha M. (1)
This force is balanced by the four tensile forces acting on the lateral
faces cf the element. From a vector diagram, Fig. 2, of the forces in
one plane,

FAQ = 1/2 Fp (2)

Substituting for FP

F=1/27P r, AL, (3)

The area of each latersgl face is

A=t/mM 4)
where t is the initial thickness and m is a coerficiznt to correct
for the thinning caused by stretching the material. Combining terms, the
following expression for the stress, 8, in the strained diaphragm wall

is obtained:

= . (5)
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Since the same tensile force acts in the grooved portion of the diaphragm
as in the wall, the stress in this part, Sg’ is to the stress in the wall

as the inverse ratio of their respective cross~sec+ional areas; that is,

gler
>
o

(6)

mtmm

E] *m"
o0

%2

Wa lm" laln

where tg is the initial thickness at the groove and mg is its thinning

coefficient.

The term stress, as used here thus far, may be referred to as
the true stress as opposed to the nominal stress, the wvalue conventionally
determined in a tensile test of the material. The true stress and strain

. 3
are defined™ as:

True stress = E. S )
A

where F is the load and A is the actual cross-section after straining.

True strain = 1In . 6 (8
4

where 4 is the length after straining and io is tne original length. The

nominal stress and strain are defined as:

Ncminal stress = = g' (9)

A
)
where F is the load and AO is the original cross-sectional area; and

£ -
Nominal strain = ——2 = € (10)

o
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where €0 and { are the original and strained length respectively. From

their definitions, then, the true stress is to the nominal stress as the

DR i

original cross-sectional area is to the area after straining; that is,

3 IE S Ab
R (11)

b S

and the true and nominai strains have the following relstionship to one

ancther:

e _-.s-l-}_:-{‘—'. (12)
i

Most of the diaphragm deformation occurs above the yield condition

for the material, see Fig. 3. The change in volume of a material during

HEAM e

the first stage of plastic deformation (i.e. prior to necking) is negligible.

Hence, assuming constant volume, the original volume, Vo = Aoéo, equals

2 kA Ly fr

the volume after straining, V = Al, so that

xr

A
—o _t, (13)
A {4

i S g

o]

In the case of the element of diaphragm wall previously considered, the

ER N e 4 L

cross-sectional area for the elemental width AL is t AL before straining

and t/m AL afterwards so that

3yt o e sty

&

t 4
A

= m. {14)

A
2 -
A

&

3lm

The thinning coefficient, therefore, corresponds to the ratio of the initial
to strained cross-sectional areas, and the following relationships between

the thinning coefficient and true and nominal stress and strain are obtained:
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S (15)

Equation (5) may now be written in terms of the nominal stress as

Pr

1%
§' = — o (16)
2t
Equation (6) may be written as
Sl
5 Lt an
s' t

g

since the above relationships of stress, strain and thinning coefficient

)

would also hold for the material in the grooved part of the diaphragm.

The nominal stress in the grooved portion of the diaphragm is

greater than that in the rest of the wall by a factor of %—
g

less than t), and the diaphragm will rupture at the groove when S'g

t bein
(g 8

reaches the ultimate stress fcr the material, S'u. The nominal stress

in the wall at the burst condition, then, is proportional ‘o the thickness
ratioy that is,

t
S, = — s
b t u (18)
Since stress and strain are functions of one another as determinable from
a tensile test of the material, the strain and, thereby, the thinning

coefficient are also functions of the thickness ratic at the burst condition.

% This is the familiar expression for the stress in a thin-walled sphere

where the stress is assumed to be evenly distributed across the wall thickness.

- 10 -
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Referring to Fig. 2, the length at any cross section of the part of the ]

diaphragm in the opening is 2(a + b) before straining and 2(alt + ril)

vy e U D

afterwards, so the nominal strain at any point in the deformed portion

may be represented as

e
o

L -4 2(a+r.,) Q@ - 2(a+ b) (a+1r,)a
¢ = © - 3 = 3 - 1. (19)

&o 2{a + d) a+b

By ons

Noting in Fig. 2 that

s |

2 = sin Q (20)
atr

&
w

the strain may be written in terms of @ or r The strain and, thereby,

3.

the stress and thinning coefficients are all functions of r, for an {

opening of radius b with rounded edge of radius a. Thus r, for a given N

LTI T it o6 tofh > 80 U7 Ten AR T e xd i Tsbe e seria L ovange

]

t-
e,

opening is also a function of the thickness ratio at the burst condition.

e i

7

Equation (5) may be written in terms of r3, since r, + ﬁ = r3, Fs i

| é
" s =B 1)=ns (21) )
2\t ;

Therefore, for a particular opening and diaphragm material, the burst

pressure may be determined for a given set of values of t and tg since §',
i t
m and r, at the burst condition are all functicas of Eg .

A typical nominal stress-strain diagram for 304 stainless steel

- "y
\

is shown in Fig. 3. The relationship of @ to the nominal strain and the

thinning coefficient is presente. in Fig. 4. Figure 5 shows the true

ey
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stress in the diaphragm wall at the burst condition as a function of the
thickness ratio; and Fig. 6 shows the relationship of thickness ratio
to @ at the burst condition. These curves are generally applicable to

the design of 304 stainless steel diaphragms of the type shown in Fig. 1

and may be used for any given size of opening to determine the thicknesses

required for a given burst pressure. For an opening of radius b having
a rounded edge of radius a, @ may be determined with relationship to

Ty from Equation (20) and referring to Figs. & and 6 a plot made of

t t
mr, vs Es° From this and the relationship of S to E&’ Fig. 5, burst

pressures may be computed and plotted against t for various values of

t
Eg as has been done in Fig. 7 for the gun tunnel opening.

RESULTS AND CONCLUSIONS
Average values of diaphragm burst pressure and thickness based
on data from forty-seven gun tunnel tests are shown in Fig. 7 with

their thickness ratios for comparison with the analytically predicted

values. These experimental values are for the 304 stainless steel diaphragms

initially used in the APL Hypersonic Sun Tunnel. The majority of tests
vere made at the 5500 and 7500 psi leveis. The variations in nominal
burst pressure for the diaphragms tested were on the order of + 500 psi
and the variation in thickness on the order of + .002 inches. Petalling
was satisfactory for those diaphragms having nominal burst pressure of

3500 and 5500 psi, erratic at the 7500 psi level, and generally poor for

those above. This fall-off in petal behavior with increasing pressure (and

- 14 -
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thickness) is accompanied by g decrease in the radius of diaphragm curvature
which may be seen in Fig., 7 where the outside radii corresponding to the
thickness ratio for the curves are also given. Figure 8 uses the radii
determined from the thickness ratios for the 3500 and 13,500 psi diaphragms

to compare the amount of petal projection into the opening.

Where reflected shock waves are present, the amount of diaphragm
petal curvature can be a factor in pecal damage. The extent to which
pressure and thickness are involved in petalling is not immediately
evident from this study; however, an optimum value, or range of values,
of thickness ratio apparently does exist for satisfactory petalling.

This value is on the order of 0.65 for the diaphragms studied. Further
investigation of this and the other factors could prove to be very useful

in eliminating petalling problems.,

The good correlation of experimentai and analytical
results indicates that the method of analysis may be generally useful in
designing rupture diaphragms. It should be noted that the edge of the
diaphragm is held at its periphery so that lateral slippage is essentially
eliminated. The degree to which burst pressure may be fixed is limited
in practice by the uniformity of material and thickness that can be attained
in fabrication. The deviation in burst pressure for the diaphragms tested
is less than would he predicted analytically for the observed thickness
tolerance and is as small as can rensonably he expected in this case. The
tolerances in any given situation will depend on the opening size, material

and pressure involved.
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